MANAGEMENT OF PAIN AND FEVER IN DIFFERENT MEDICINAL SYSTEM- A REVIEW

Sushma Singh 1, Sandeep Kumar Singh *1 and Kuldeep Singh 2

Department of Pharmacology 1, School of Pharmacy, Babu Banarsi Das University, Lucknow - 226028, Uttar Pradesh, India.
Faculty of Pharmacy 2, Integral University Kursi Road, Dasauli, Lucknow - 226028, Uttar Pradesh, India.

ABSTRACT: Pain is a subjective, multidimensional and unpleasant experience allied with actual or potential tissue damage comprising sensory, affective and cognitive components. Pain signals interpretation is a complex process that entails excitation of peripheral nerves and further excitation of nociceptive inputs. Painkiller is member of diverse group of drugs used to relieve pain and to achieve analgesia. Fever is recognized as physiological response which is triggered by infectious stimuli or aseptic stimuli. Elevation in body temperature occur when concentrations of prostaglandin-E2 (PGE2) increases within certain areas of the brain. These elevations alter the firing rate of neurons that control thermoregulation in the hypothalamus. It is commonly suppressed with antipyretic medications. Several traditional medicinal systems are available for the treatment of pain & fever like Ayurveda, Unani, Chinese, homeopathic, physiotherapy & non-pharmacological procedures etc. Pain & fever treatment in allopathic system are frequently used but has many adverse effects like renal & liver dysfunction, ulceration, sedation, dizziness, nausea, vomiting, constipation, physical dependence, tolerance, and respiratory depression, etc. This compilation addresses the different medicinal systems and therapies used for the treatment of pain and fever.

Keywords: Pain, Fever, Allopathic, Ayurvedic, Homeopathic, Unani

Pain Pathophysiology: A painful stimulus elicits activation of receptors in the periphery, which transduces the stimulus into an electrical impulse 4. Pain signals is a complex process which results in local interactions within the spinal dorsal horn, and then activation of ascending and descending circuits that comprise a loop from the spinal cord to supraspinal structures and finally exciting nociceptive inputs at the spinal level 5.

Numerous chemical substances play important role in generating nociceptive impulses (e.g., prostaglandins, histamine, serotonin). Furthermore, the role of neuropeptides as calcitonin gene-related peptide and particularly substance P has been demonstrated in the activation of early neurogenic
inflammation. Bradykinin and cytokines are also involved in prolonging the sensation of pain.

Nociceptive Pain Mechanism: Nociceptive pathway, consist of a three-neuron chain, is now understood to be a dual system at each level, and the sensation of pain is thought to arrive in the central nervous system with the discriminative component of pain ("first pain") carried separately from the affective-motivational component of pain ("second pain") 7. In addition to spinal control mechanisms of nociceptive transmission, descending pathways originates in three major areas that are cortex, thalamus, and brain stem and can modify functions at the spinal level. The nociceptive ending is stimulated by prostaglandins, bradykinin, and other neurotransmitter, metabolites and ions 8. Each of these factors sensitizes (lowers the threshold) or excite the terminals of the nociceptor by interacting with cell-surface receptors expressed by these neurons whereby release of substance P, neurotransmitters, and calcitonin gene-related peptide (CGRP), from the peripheral terminal, induces vasodilation and plasma extravasation 9.

Fever: Fever or pyresis is recognized as a complex, coordinated, autonomic, behavioral response, and neuroendocrine, which occurs due to acute phase reaction to immune challenge 10.

Pathophysiology of Fever: Fever appears evolved in vertebrate hosts as an adaptive mechanism to control infection. This phenomenon is produced by some exogenous (largely microbial) stimuli that activated bone-marrow-derived phagocytes to release an endogenous pyrogen. That circulates to the thermoregulatory center of the brain (preoptic area of the anterior hypothalamus) where it causes an elevation in the "set-point" for normal body temperature 11.

Molecular Mechanism of Fever: Distinct members of Toll receptors in macrophages receptor family recognize different and specific microbial components, but biosynthesis and releases same endogenous pyrogens, such as IL-1β, TNF, and IL-6 12. These pyrogenic cytokines acts on organum vasculosum area of the brain known as laminae terminalis leading to activation of the enzyme cyclooxygenase-2 (COX-2) that results in release of prostaglandin E2 (PGE2), which binds to receptors in the hypothalamus leading to an increase in heat production and a decrease in heat loss until the temperature in the hypothalamus reaches an elevated set-point 13.

<table>
<thead>
<tr>
<th>TABLE 1: ALLOPATHIC TREATMENT OF PAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>For mild pain</td>
</tr>
<tr>
<td>A non-narcotic analgesic or NSAIDs like Aspirin 14, paracetamol 15, ibuprofen 16, acetylsalicylic acid 17, diclofenac 18, meloxicam 19 are used to treat mild pain if the pain is unable to recover then narcotic drugs is recommended</td>
</tr>
<tr>
<td>Adverse effect- Renal & liver dysfunction, ulceration 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 2: CERTAIN CLINICAL PAIN AND THEIR TREATMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Pain Condition</td>
</tr>
<tr>
<td>Acute abdominal pain</td>
</tr>
<tr>
<td>Acute migraine</td>
</tr>
<tr>
<td>Atypical facial pain</td>
</tr>
<tr>
<td>Fibromyalgia</td>
</tr>
<tr>
<td>Burn injury</td>
</tr>
<tr>
<td>Neuropathic pain</td>
</tr>
</tbody>
</table>
Targets of New Analgesics: Ion channels are integral membrane proteins that contain pathways through which ions can flow. They are considered likely targets in the treatment of pain. Members of Voltage-gated calcium channels family contain α, β, and γ subunits, and play a role in neuronal excitation. The α subunit of L-type calcium channels is the target of the established co-treatments for neuropathic pain. These calcium channels also play key role in chronic pain. They are coded by the CACNA1B gene and expressed at the presynaptic terminals of primary afferent neurons that end in the dorsal horn of the spinal cord. Potassium channel Kir3.2, a two-transmembrane-one pathway potassium channel, is involved in opioid signaling on postsynaptic inhibition and mediates a significant component of analgesia. Cerebral endocannabinoid signaling is involved in antinociception.

5-HT receptors are expressed in the central and peripheral nervous systems where they mediate both excitatory and inhibitory neurotransmission. Several 5-HT receptor subtypes are involved in nociception. Currently, only the 5-HT1A receptor is being studied as the target of an analgesic. trkA is a catalytic receptor being approached as an analgesics target.

Allopathic Treatment of Fever: For the treatment of fever it is necessary to know the fever’s underlying cause. Different over the counter are used in reducing body temperature to a normal level as well as to treat the underlying cause. OTC antipyretic that are used normally includes nonsteroidal anti-inflammatory drugs like aspirin, nimesulide, paracetamol, ketoprofen, ibuprofen, meloxicam, celecoxib, rofecoxib.

The Target of Antipyretic: Cyclooxygenase (COX), also known as prostaglandin endoperoxide synthase, is the key enzyme required for the conversion of arachidonic acid to prostaglandins. Two COX isoforms have been identified, COX-1 and COX-2. In many situations, the COX-1 protein is produced constitutively (e.g., in gastric mucosa), whereas COX-2 is highly inducible (e.g., at sites of inflammation and cancer). Traditional nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit both enzymes, and a new class of COX-2 selective inhibitors (COXIBs) preferentially inhibits the COX-2 enzyme.

Herbal Treatment of Pain: Many medicines of plant origin had been used since ages without any adverse effects. There is much importance of pain relief from these analgesic herbs; some are the best-loved and most popular remedies. Some uses for Analgesic herbs are mostly common in neuralgia, toothaches, sore muscles lower back pain and headaches.

TABLE 3: SOME OF THE HERBS WITH ANALGESIC ACTIVITY

<table>
<thead>
<tr>
<th>Plant name</th>
<th>Family</th>
<th>Part used</th>
<th>Chemical Constituent</th>
<th>Activity may be due to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleome rutidosperma (Purple Cleome)</td>
<td>Capparidaceae</td>
<td>Ariel part</td>
<td>Tannins, steroids, flavonoids, terpenoids, Phenolic compounds such as gallic acid and epicatechin</td>
<td>Inhibition of cyclooxygenase, a prostaglandin derivative</td>
</tr>
<tr>
<td>Psidium Cattleianum (araça-roso)</td>
<td>Myrtaceae</td>
<td>Leaves</td>
<td></td>
<td>Its antioxidant effect</td>
</tr>
<tr>
<td>Caralluma dalzielii (mosque stalk)</td>
<td>Asclepiadaceae</td>
<td>Whole plant</td>
<td>Saponins, alkaloids, glycosides, tannins, terpenoids, flavonoid</td>
<td>Inhibition of either synthesis, release or action of PGE2, PGF2α, serotonin, and histamine</td>
</tr>
<tr>
<td>Urtica circularis (ortiga)</td>
<td>Urticaceae</td>
<td>Ariel part</td>
<td>Caffeic acid, chlorogenic acid, and vitexin</td>
<td>Increased cGMP concentration which will lead to hyperpolarization thereby inducing analgesia</td>
</tr>
<tr>
<td>Artemisia scoparia (Jhahoo)</td>
<td>Asteraceae</td>
<td>Whole plant</td>
<td>Chlorogenic acid, coumarin, capillariasis,</td>
<td>An inhibitory effect on the production or action of inflammatory</td>
</tr>
</tbody>
</table>
Herbal Treatment of Fever: Traditional systems of medicine or care by herbals are used throughout the world and from century’s herbs have been the source for most of the drugs. Numerous medicinal plants are available today for treating fever 74.

TABLE 4: SOME OF THE HERBS WITH ANTI-PYRETIC ACTIVITY

<table>
<thead>
<tr>
<th>S. no.</th>
<th>Botanical/ Common name</th>
<th>Family</th>
<th>Part used</th>
<th>Chemical constituent</th>
<th>Activity may be due to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Magnolia obovate</td>
<td>Magnoliaceae</td>
<td>Trunk bark</td>
<td>Costunolide and related sesquiterpene lactones</td>
<td>Inhibition of COX-2</td>
</tr>
<tr>
<td>2</td>
<td>Vernonia cinerea</td>
<td>Asteraceae</td>
<td>Leaf</td>
<td>Terpenoid, alkaloid, flavonoid</td>
<td>CNS depression which is due to decreased excitatory activities of the monoamines</td>
</tr>
<tr>
<td>3</td>
<td>Artemisia scoparia</td>
<td>Asteraceae</td>
<td>Whole plant</td>
<td>Chlorogenic acid butyl ester, Magnoliopsida</td>
<td>Inhibitory influence on prostaglandin biosynthesis or release</td>
</tr>
<tr>
<td>4</td>
<td>Bauhinia racemosa</td>
<td>Caesalpiniaceae</td>
<td>Stem bark</td>
<td>Flavonoids, coumarins, triterpenoids, stilbenes, steroids, and tannin</td>
<td>Unknown</td>
</tr>
<tr>
<td>5</td>
<td>Clitoria ternatea</td>
<td>Fabaceae</td>
<td>Root</td>
<td>Flavonoids</td>
<td>Unknown</td>
</tr>
<tr>
<td>6</td>
<td>Phrygilanthus acutifolius</td>
<td>Loranthaceae</td>
<td>Flowers</td>
<td>-</td>
<td>Inhibition of prostaglandin synthesis</td>
</tr>
<tr>
<td>7</td>
<td>Mallotus peltatus</td>
<td>Euphorbiaceae</td>
<td>Leaves</td>
<td>Sitosterol</td>
<td>Inhibition of prostaglandin synthesis</td>
</tr>
<tr>
<td>8</td>
<td>Hyoscyamus niger</td>
<td>Solanaceae</td>
<td>Seed</td>
<td>Cleomiscosin A</td>
<td>Unknown</td>
</tr>
<tr>
<td>9</td>
<td>Diospyros mespiliformis</td>
<td>Ebenaceae</td>
<td>Stem bark</td>
<td>Alkaloids, quinones, saponins, sterol, tannins</td>
<td>Inhibition of sensitization of pain receptors by prostaglandin at the inflammatory site</td>
</tr>
<tr>
<td>10</td>
<td>Caesalpinia bonducella</td>
<td>Caesalpiniaceae</td>
<td>Leaves</td>
<td>Flavonoids, alkaloids, saponins, triterpenes, tannins, and steroids</td>
<td>Inhibition of prostaglandin synthesis</td>
</tr>
</tbody>
</table>

Homeopathy Treatment of Pain: Homeopathic Remedies have an essential role in body pains and aches treatment. Homeopathic treatment does not have side effect and can be obtained from naturally occurring plant and substance 85.

Unani Treatment of Pain: In the Unani literature, Arabic word Waja’ is used for pain. Unani medicine system uses naturally the treatment of different alignment. These drugs treat the disease and have no side effect 87.
TABLE 5: HOMEOPATHIC REMEDIES FOR PAIN

<table>
<thead>
<tr>
<th>Homeopathic Remedies</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhus toxicodendron</td>
<td>Essential in treatment of pain and aches at resting position and are of a better choice in overstraining and overstretching</td>
</tr>
<tr>
<td>Arnica montana</td>
<td>It is effective in sore body pain and joint pain</td>
</tr>
<tr>
<td>Bryonia alba</td>
<td>It is of use in pain and aches resulting from muscle and joint</td>
</tr>
<tr>
<td>Magnesium phosphorica</td>
<td>It is useful in pains and aches of wide varieties (shooting, cutting or stitching in nature)</td>
</tr>
<tr>
<td>Ruta graveolens</td>
<td>Useful when pain is associated with weakness</td>
</tr>
<tr>
<td>Gelsemium sempervirens</td>
<td>Useful in pain associated with drowsiness</td>
</tr>
<tr>
<td>Eupatorium perfoliatum</td>
<td>It is useful in pains that are associated with fever</td>
</tr>
<tr>
<td>Bryonia alba</td>
<td>It is useful in joint pain due to Rheumatoid arthritis.</td>
</tr>
</tbody>
</table>

TABLE 6: HOMEOPATHY TREATMENT OF FEVER

<table>
<thead>
<tr>
<th>Homeopathic Remedies</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aconite</td>
<td>When skin is dry and restless</td>
</tr>
<tr>
<td>Belladonna</td>
<td>When there is delirium with the fever</td>
</tr>
<tr>
<td>Bryonia</td>
<td>When the patient is restlessness and wants to rest</td>
</tr>
<tr>
<td>Gelsemium</td>
<td>When the patient is drowsy and sleepy</td>
</tr>
<tr>
<td>Mercurius Vivus</td>
<td>When there are chill and sweating</td>
</tr>
<tr>
<td>Nux Vomica</td>
<td>When the body is hot</td>
</tr>
<tr>
<td>Pulsatilla</td>
<td>When there is constant chillness</td>
</tr>
<tr>
<td>Pyrogenium</td>
<td>When the temperature is high and low in an alternating way</td>
</tr>
<tr>
<td>Rhus Toxicodendron</td>
<td>When fever is caused by getting wet</td>
</tr>
</tbody>
</table>

TABLE 7: UNANI DRUGS FOR PAIN

<table>
<thead>
<tr>
<th>Plant</th>
<th>Family</th>
<th>Part used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zingiber officinale</td>
<td>Zingiberaceae</td>
<td>Rhizome</td>
</tr>
<tr>
<td>Piper nigrum</td>
<td>Piperaceae</td>
<td>Fruits</td>
</tr>
<tr>
<td>Bambusa arundinaceae</td>
<td>Bambusaceae</td>
<td>Leaves</td>
</tr>
<tr>
<td>Curcuma longa</td>
<td>Zingiberaceae</td>
<td>Rhizome</td>
</tr>
<tr>
<td>Saussurea lappa</td>
<td>Asteraceae</td>
<td>Roots</td>
</tr>
</tbody>
</table>

TABLE 8: UNANI TREATMENT OF FEVER

<table>
<thead>
<tr>
<th>Plant</th>
<th>Family</th>
<th>Part used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piper longum Linn.</td>
<td>Piperaceae</td>
<td>Fruits, root</td>
</tr>
<tr>
<td>Cassia fistula Linn.</td>
<td>Leguminosae</td>
<td>Resin</td>
</tr>
<tr>
<td>Eugenia jambolana Lam.</td>
<td>Myrtaceae</td>
<td>Seed, bark, leaf</td>
</tr>
<tr>
<td>Plumbago zeylanica Linn.</td>
<td>Plumbaginaceae</td>
<td>Root, root bark</td>
</tr>
<tr>
<td>Zingiber officinale Rosc.</td>
<td>Zingiberaceae</td>
<td>Rhizome</td>
</tr>
</tbody>
</table>

Home Remedies for the Treatment of Fever:
When there is mild fever home remedy is sufficient to treat it, mainly when there is a mild infection like flu and cold. Some of the remedies are

- Fluid intake should be increased.
- If the fever is high then bath to reduce it and not to eliminate it, the room should be well ventilated.
- If the fever raises continuously then sponging with lukewarm water can be useful.
- Any type of stress should be avoided.
- Herbs and other cooking ingredient are also used to reduce fever.
- Boiled filtrate of basil leaves in the water on drinking once a day reduces the temperature.
- When fever is present, then a half teaspoon of saffron is taken with warm water.
- Grapefruit juice with water is useful in reducing fever.
• Honey mixed with ginger is useful in fighting fever.

Non-Pharmacological Treatment of Pain:

Physiotherapy: Physiotherapy modalities are commonly used in the treatment of pain, especially in rheumatoid arthritis. These consist of heat & cold applications, hydrotherapy, electrical stimulation, etc. By applying heat, muscle spasm is relieved, analgesia is accomplished and elasticity of periarticular structures obtained. The intra-articular temperature increased by superficial heat application. In cold application opposite of hot application occurs. Effects of heat application change between normal healthy subjects and patients with inflamed joints. Electrostimulation is used in patients with rheumatoid arthritis. Transcutaneous electrical nerve stimulation (TENS) therapy is the most commonly used method in which analgesia is persisted up to 18 hours. Massage is a commonly used treatment tool that enhances a feeling of connection with other treatment modalities, improves flexibility, general well being, and useful in inflamed joints. Massage is found to be effective on depression, anxiety, mood, and pain. Maintenance of normal muscle strength can be maintained by exercise therapy has beneficial effects on increasing physical capacity.

Magnetic Therapy: Magnetic therapy is a simple, non-invasive, and safe technique, usually administered over the site of a painful injury or inflammation. It has analgesic efficacy.

Psychological Therapy: Pain is also related to underlying physiological processes; there is evidence that indicates that psychological and social factors also play an important role in the experience and impact of pain.

Acupuncture: Acupuncture is used in eastern medicine. In these endogenous analgesics is released within the spinal cord. Acupuncture is reported to be effective in treating many conditions including, fibromyalgia, chronic low back pain, as well as chronic pain caused by osteoarthritis. Due to its analgesic effects, acupuncture is widely used, cost-effective and a relatively safe non-pharmacological treatment of musculoskeletal pain.

CONCLUSION: Allopathic treatment is the most frequently used system, potent and beneficial in emergencies like postoperative pain, burn pain, and acute abdominal pain. Thus in chronic conditions of pain and fever, allopathic medicine system is the preferred as the choice of treatment but has many adverse effects like renal & liver dysfunction, ulceration, sedation, dizziness, nausea, vomiting, constipation, physical dependence, tolerance, respiratory depression, angioneurotic edema, and GI hemorrhage.

Herbal medicines make an enormous contribution to primary health care and have shown great potential in modern phytomedicine against pain and fever. Several plants have been described in Ayurveda, Unani, homeopathy and another traditional medicinal system for the management and prevention of pain and fever according to the perceived needs of the patient and based upon the individual herb’s constituents. Disease with pain and fever are widespread and required more attention; a large number of people these days are looking for herbal remedies and relief for their ailments.

Besides these other non-pharmacological treatments such as physiotherapy, acupuncture, magnetic therapy is used to alleviate pain. Ayurvedic, homeopathic, Siddha, Unani, physiotherapy offers a wide range of preventive and curative treatments that are both cost effective and efficacious. Therefore, our efforts should be directed towards the review of different medicinal system with their target for the treatment of pain and fever with major drugs.

ACKNOWLEDGEMENT: I would like to express my sincere thanks to Prof. Rajiv Gupta, Dean, School of Pharmacy, BBD University, Lucknow, Uttar Pradesh for encouragement and providing library facilities to access the journals. I would also like to thank organizers of the national conference entitled ‘Novel Tools and Treatment Approaches in Health Care System’ for selecting my paper for poster presentation, organized at Faculty of Pharmacy, Integral University, Lucknow on 3rd March 2015.

CONFLICT OF INTEREST: Nil
REFERENCES:

How to cite this article: