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ABSTRACT: One of the important aspects of modern toxicology research is the prediction of toxicity of 

environmental pollutants from their molecular structure A Quantitative Structure Toxicity Relationship (QSTR) 

study was applied to a dataset of 35 polychlorinated dibenzofurans (PCDFs) to investigate the relationship between 

toxicities of the compounds and their structures. The molecular descriptors were obtained by Density Functional 

Theory (DFT) (B3LYP/6-31G*) level of calculation. The QSTR model was built using Genetic Function Algorithm 

(GFA) method. The model with the best statistical significance (N = 24, Friedman LOF = 0.361, R2 = 0.963, R2adj. 

= 0.955 R2cv = 0.889, R2pred= 0.8286, P95% ˂ 0.05) was selected. The accuracy of the model was evaluated 

through Leave one out (LOOV) cross-validation, external validation using test set molecules, Y-randomization, and 

applicability domain techniques. The prediction results are expected to be useful in predicting and identify structural 

features responsible for the toxicity of the chemicals and other congeneric compounds that fall within the model‟s 

applicability domain. 

Keywords: GFA, DFT, PCDFs, QSTR, Toxicity, Descriptors 

Correspondence to Author: 

Mr. Sabitu Babatunde Olasupo 

Department of chemistry, Kano University of Science and Technology, Wudil Kano, Nigeria. 

E-mail: olasabit@yahoo.com 

INTRODUCTION: A quantitative risk assessment 

becomes increasingly important in modern society 

and is slowly incorporated into the legislation of 

different countries. For instance, the European 

Union (EU) has introduced the Registration, 

Evaluation, and Authorization of Chemicals 

(REACH) program for assessment of the human 

and environmental risk of all chemicals that are 

produced or imported in the amount greater than 1 

ton per year.  

QUICK RESPONSE CODE 

 

 
DOI: 

10.13040/IJPSR.0975-8232.IJLSR.2(12).175-86 

The article can be accessed online on 
www.ijlsr.com 

DOI link: http://dx.doi.org/10.13040/IJPSR.0975-8232.IJLSR.2(12).175-86 

One of the important aspects of modern toxicology 

research is the prediction of toxicity of 

environmental pollutants from their molecular 

structure. The potential toxicity of compounds 

could be assessed based on a wide variety of 

physicochemical and biological properties 
1
. These 

physicochemical and biological properties of 

molecules constitute their molecular descriptors. 

Polychlorinated dibenzofurans (PCDFs) are 

polychlorinated aromatic compounds that represent 

a group of environmental contaminants known by 

their ubiquitous distribution, resistance to 

biological and chemical degradation, high toxicity, 

and bioaccumulation 
2
. They can have a significant 

impact on the health and well-being of human and 

animals 
2
. Some of the health effects at long 

exposure to these compounds include liver 
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enlargement and lesions, immune-toxicity, a 

wasting syndrome, spleen atrophy, carcinogenesis, 

endocrine disruption, and extreme cases, death 
3
. In 

addition to these, several persistent organic 

pollutants (e.g., PCDFs) are suspected of 

contributing to the increasing prevalence and risk 

of type 2 diabetes 
4
. Polychlorinated dibenzofurans 

(PCDFs) are mainly formed or produced from as 

by-products of various industrial processes and 

incomplete combustion of wastes such as medical 

or municipal wastes incineration, including burning 

of many materials that contain chlorine and 

polychlorinated chemicals 
5, 6

. 

Quantitative structure activities relationship 

(QSAR/QSTR) as an important area of 

chemometrics has been the subject of a series of 

investigations 
7
. In order to ensure a safer 

environments and quicker estimation of the 

environmental behaviours of PCDFs, quantitative 

structure-toxicity relationship (QSTR) models, 

which correlate and predict toxicity data of 

compounds from their molecular structural 

descriptors have been developed over the years, 

providing valuable approach in research into the 

toxicity of compounds without necessarily 

embarking on the conventional laborious, time-

consuming and expensive experiments. QSTR has 

been widely applied to evaluate and predict the 

toxicity of chemicals 
8
. Previous studies have 

shown that reliable QSTR models are not only 

applied to predict the toxicity and provide basic 

data to risk assessment but also used to explain the 

toxicity mechanisms 
9
.  

The alternative hypothesis of this study includes: 

The magnitude of the observed toxicity log 

(1/EC50) of Polychlorinated dibenzofurans (PCDFs) 

is a direct function of the empirical property (ies) 

or the theoretical parameter(s) which makes the 

descriptor of the total chemical structure of the 

compounds under investigation. 

The null hypothesis to this research includes; 

The observed toxicity log (1/EC50) of 

Polychlorinated dibenzofurans (PCDFs) is 

independent of the descriptors of their total 

chemical structures. This study aims to build robust 

and rational Genetic function approximation (GFA) 

based QSTR models on predicting the toxicity of 

Polychlorinated dibenzofurans (PCDFs) by 

exploring the correlations between the 

experimental log (1/EC50) of the compounds and 

their calculated molecular descriptors. It is 

envisaged that the information in this study would 

provide a fast, economical, more environmentally 

friendly and less time-consuming techniques of 

accessing the toxicity of Polychlorinated 

dibenzofurans (PCDFs)  and other related toxic 

Polychlorinated aromatic chemicals and Organic 

pollutants that could endanger our environment. 

MATERIALS AND METHODS: The materials 

used in this study include; Dell
®
 computer system 

(Intel Pentium), 4.80 GHz processor, 8GB RAM 

size on Microsoft Windows 7 Ultimate operating 

system, Spartan 14 V.1.1.0, Chem Draw Ultra 

12.0.V, Padel descriptor tool kit and Microsoft 

office Excel 2013 version, Material Studio 

(modeling and simulation software) version 7.0, 

and Dataset Division GUI v 1.2 software. The 

various steps invoked for the QSTR study are 

presented in the flowchart in Fig. 1. 

FIG. 1: STEPS INVOKED IN THE QSAR STUDY 

Data collection: A data set of Polychlorinated 

dibenzofurans (35 PCDFs) used for the QSTR 

analysis was selected from the literature 
10

. The 

Chemical structures and experimental log (1/EC50) 

values for studied compounds are represented in 

Table 1. 
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TABLE 1: CHEMICAL STRUCTURES AND EXPERIMENTAL LOG (1/EC50) VALUES OF (PCDFS) 

S/N. IUPAC name/Chemical structure TOXICITY log (1/EC50) 

1 

 
2-Chlorodibenzofuran 

3.55 

2 

 
1,2,4,6,8-Pentachlorodibenzofuran 

5.51 

3 

 
1,2,3,7,8-Pentachlorodibenzofuran 

7.13 

 

4 

 
2,3,4,7,9-Pentachlorodibenzofuran 

 

6.70 

5 

 
1,2,3,7,9-Pentachlorodibenzofuran 

6.40 

6 

 
2,3,4,7,9-Pentachlorodibenzofuran 

6.70 

7 

 
1,3,4,7,8-Pentachlorodibenzofuran 

6.70 

8 

 
2,3,4,7,8-Pentachlorodibenzofuran 

7.82 
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9 

 
1,2,4,7,8-Pentachlorodibenzofuran 

5.89 

10 

 
1,2,3,7,8-Pentachlorodibenzofuran 

7.13 

11 

 
1,2,3,4,8-Pentachlorodibenzofuran 

6.92 

12 

 
1,2,4,7,9-Pentachlorodibenzofuran 

4.70 

13 

 
1,2,4,6,7-Pentachlorodibenzofuran 

7.17 

14 

 
1,2,3,4,7,8-Hexachlorodibenzofuran 

6.64 

15 

 
1,2,3,6,7,8-Hexachlorodibenzofuran 

6.57 

16 

 
1,2,4,6,7,8-Hexachlorodibenzofuran 

5.08 
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17 

 
2,3,4,6,7,8-Hexachlorodibenzofuran 

7.33 

18 

 
1,2,3,7-Tetrachlorodibenzofuran 

6.96 

19 

 
2,3,4,7-Tetrachlorodibenzofuran 

7.60 

20 

 
1,2,3,6-Tetrachlorodibenzofuran 

6.46 

21 

 
2,3,6,8-Tetrachlorodibenzofuran 

6.66 

22 

 
1,2,4,8-Tetrachlorodibenzofuran 

5.00 

23 

 
2,3,7,8-Tetrachlorodibenzofuran 

7.39 

24 

 
1,3,6,8-Tetrachlorodibenzofuran 

6.66 
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25 

 
2,3,4,8-Tetrachlorodibenzofuran 

6.70 

26 

 
2,3,4,6-Tetrachlorodibenzofuran 

6.46 

27 

 
2,6,7-Trichlorodibenzofuran 

6.35 

28 

 
2,3,8-Trichlorodibenzofuran 

6.00 

29 

 
2,3,4-Trichlorodibenzofuran 

4.72 

30 

 
2,6-Dichlorodibenzofuran 

3.61 

31 

 
4-Chlorodibenzofuran 

 

3.00 

32 

 
3-Chlorodibenzofuran 

4.38 
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33 

 
1,3,8-Trichlorodibenzofuran 

4.07 

34 

 
1,3,6-Trichlorodibenzofuran 

5.36 

 

 

 

35 

 
2,8-Dichlorodibenzofuran 

3.59 

 

Molecular Optimization and Descriptors 

Calculation: Optimization is the process of finding 

the equilibrium or lowest energy geometry of 

molecules. The chemical structure of each 

compound was drawn with Chem Draw ultra 

version 
11

 12.02 module of the program and 

subsequently imported into Wave function program 

Spartan „‟14‟‟ version 
12

 1.2.2 for structural 

minimization. The geometries of all the compounds 

(35 PCDFs) were optimized using Density 

functional theory (DFT) using the B3LYP level of 

theory and 6-31G* as the basis set. The molecular 

descriptors were calculated by using paDel 

descriptor tool kit and Spartan “14” software. The 

most significant descriptors were identified using 

the Genetic Function Approximation (GFA) 

algorithm. Molecular descriptors simply refer to 

arithmetical values that describe properties of 

molecules obtained from a well-defined algorithm 

or experimental procedure 
13

. The various 0D, 1D, 

2D, and 3D descriptors were calculated. 

Data Set Division into Training and Test Set: 
The training set comprises of molecules used in 

model development while the test set is made up of 

molecules not used in building the model that is 

used in the external validation of the model, i.e. 

evaluation of its prediction abilities. Dataset 

Division GUI v 1.2 software was used to divide the 

data set of the studied compounds into a training 

set of 24 PCDFs (70%) and a prediction set (test 

set) of 11 PCDFs (30%) respectively. 

Genetic Function Algorithm & Model Building: 
In this study, a statistical technique of analysis by 

Genetic function approximation algorithm was 

employed to build the models. Genetic function 

approximation (GFA) algorithm is a search method 

to find exact or approximation solution to 

optimization and search problems, which is based 

on the principles of Darwinian evolution 
14

. A 

peculiar feature of Genetic function approximation 

(GFA) algorithm is that it generates a population of 

equations rather than a single equation as do most 

other statistical methods. The range of variations in 

this population gives added information on the 

quality of fit and importance of the descriptors 
15

. 

The fitness function or Lack of Fit (LOF) used to 

estimate the quality of the model here was the leave 

one out gross validated correlation coefficient 

(Q
2

LOO) and is calculated by equation 2.1. 

                       ...... 2.1 

Where c is the number of basic functions, d is the 

smoothing parameter, M is the number of samples 

in the training set, LSE is the least square error and 

P is the number of features contained in all basis 

functions 
16

. 
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Validation of the Developed Model: The 

predictive ability of the developed QSTR model 

was evaluated using both internal and external 

statistical validation parameters. The validation 

parameters were compared with the minimum 

recommended value for a generally acceptable 

QSAR/QSTR model proposed by Ravichandran et 

al. 
17

 shown in Table 2. 

TABLE 2: VALIDATION PARAMETERS FOR A GENERALLY ACCEPTABLE QSAR MODEL 

S/N Symbol Name Range 

1 R
2
 Coefficient of determination ≥ 0.6 

2 Q
2
 Gross validation coefficient > 0.5 

3 R
2 
pred. Coefficient of determination for external test set ≥ 0.6 

4 R
2
 adj Adjusted square correlation coefficient > 0.5 

5 P (95%) Confidence interval at 95% ≤ 0.05 

6 Next test set Minimum number of extending test set ≥ 5 

7 R
2
 – Q

2
 Difference between R

2
 and Q

2
 ≤ 0.3 

 

Applicability Domain (AD): The model was 

further validated by applying the Williams plot, the 

plot of the standardized residuals versus the 

leverage, as shown in Fig. 2. This was exploited to 

visualize the applicability domain (AD)
 8

. 

(Leverage indicates a compound‟s distance from 

the centroid of X. The leverage of a compound in 

the original space is defined as; 

 

Where xi is the descriptor vector of the considered 

compound and X is the descriptor matrix derived 

from the training set descriptor values. 

The warning leverage (h*) is defined as: 

 

Where n = number of training compounds, p= 

number of predictor variables. 

QSAR RESULTS: 

TABLE 3: MODELS GENERATED BY GFA 

S/N Equation Definition 

1 Y =  67.283 * X273 

+ 30.319* X388 

+ 71.368 * X646 

- 31.859 * X850 

- 62.577 

X273 : MATS2e 

X388 : SpDiam_Dzv 

X646 : SHBa 

X850  : XLogP 

2 Y =  70.468* X273 

+ 70.901 * X646 

+ 27.833 * X810 

- 25.951 * X850 

- 65.761 

X273 :MATS2e 

X646 : SHBa 

X810 : SpDiam_D 

X850 :XLogP 

3 Y =  12.864* X55 

+ 55.475 * X68 

+ 44.384 * X273 

- 21.059 * X665 

- 46.498 

X55 : BD : ATS5i 

X68 : AATS0m 

X273  : MATS2e 

X665  : maxwHBa 

4 Y =  404.661* X109 

+ 49.204 * X273 

+ 415.328* X431 

- 17.126 * X665 

- 442.707 

X109 : DF : AATS5i 

X273 :  MATS2e 

X431 : SM1_Dzi 

X665 : maxwHBa 

5 Y =  39.983631205 * X97 

+ 4.055892341 * X235 

+ 43.096234880 * X273 

- 19.022551018 * X665 

- 33.547 

X97 :  AATS2p 

X235 :AATSC5i 

X273 : MATS2e 

X665 : maxwHBa 
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TABLE 4: STATISTICAL PARAMETERS OF THE BEST MODEL 

Model R
2
 R

2
adj F-Value R

2
cv Friedman LOF 

1 0.963 0.955 122.008 0.889 0.361 

Based on statistical significance, model 1 is chosen as the best model

TABLE 5: A BRIEF DESCRIPTION OF THE SELECTED DESCRIPTORS OF THE BEST MODEL-1 

Descriptor Regression coefficient Description Descriptor Class 

MATS2e 67.283 Moran autocorrelation - lag 2 / 

weighted by Sanderson 

electronegativities 

Autocorrelation Descriptor 

 

SpDiam_Dzv 

 

30.319 Spectral diameter from Barysz 

matrix / weighted by van der Waals 

volumes 

Barysz Matrix Descriptor 

SHBa 71.368 Sum of E-States for (strong) 

hydrogen bond acceptors 

Electro topological State Atom Type 

Descriptor 

XLogP -31.859 XLogP XLogP Descriptor 

TABLE 6: COMPARISON OF EXPERIMENTAL LOG (1/EC50) AND PREDICTED LOG (1/EC50) OF TRAINING 

SET MOLECULES BY MODEL 1 

S/N Chemical  

Names 

Experimental 

log (1/EC50) 

Predicted log 

(1/EC50) 

Residual  

log (1/EC50) 

1 1,2,4,6,8-Pentachlorodibenzofuran 5.510 5.273 0.237 

2 1,2,3,7,9-Pentachlorodibenzofuran 6.400 6.265 0.135 

3 2,3,4,7,9-Pentachlorodibenzofuran 6.700 7.077 -0.377 

4 1,3,4,7,8-Pentachlorodibenzofuran 6.700 6.984 -0.284 

5 2,3,4,7,8-Pentachlorodibenzofuran 7.820 7.988 -0.168 

6 1,2,3,7,8-Pentachlorodibenzofuran 7.130 7.176 -0.046 

7 1,2,3,4,8-Pentachlorodibenzofuran 6.920 6.658 0.262 

8 1,2,4,7,9-Pentachlorodibenzofuran 4.700 4.706 -0.006 

9 1,2,3,4,7,8-Hexachlorodibenzofuran 6.640 6.359 0.281 

10 1,2,3,6,7,8-Hexachlorodibenzofuran 6.570 6.409 0.161 

11 1,2,4,6,7,8-Hexachlorodibenzofuran 5.080 5.396 -0.316 

12 2,3,4,6,7,8-Hexachlorodibenzofuran 7.330 7.251 0.079 

13 1,2,3,7-Tetrachlorodibenzofuran 6.960 6.922 0.038 

14 2,3,4,7-Tetrachlorodibenzofuran 7.600 7.744 -0.144 

15 1,2,3,6-Tetrachlorodibenzofuran 6.46 6.429 0.030 

16 2,3,6,8-Tetrachlorodibenzofuran 6.660 6.483 0.177 

17 2,3,7,8-Tetrachlorodibenzofuran 7.390 7.384 0.006 

18 2,3,4,8-Tetrachlorodibenzofuran 6.700 6.833 -0.133 

19 2,6,7-Trichlorodibenzofuran 6.350 5.788 0.562 

20 2,3,4-Trichlorodibenzofuran 4.720 4.793 -0.073 

21 4-Chlorodibenzofuran 3.000 3.336 -0.336 

22 3-Chlorodibenzofuran 4.380 3.909 0.470 

23 1,3,8-Trichlorodibenzofuran 4.070 4.518 -0.448 

24 2,8-Dichlorodibenzofuran 3.590 3.697 -0.107 

 
FIG. 2: PLOT OF PREDICTED (TRAINING & TEST SETS) vs. THE OBSERVED LOG (1/EC50) VALUES 
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FIG. 3: SCATTERED PLOT OF THE EXPERIMENTAL AND PREDICTED LOG (

1
/EC50) TEST SET MOLECULES 

 
FIG. 4: WILLIAMS PLOT OF MODEL 1 

TABLE 7: THE RESULTS OF Y-RANDOMIZATION OF THE TRAINING SET 

Model R R^2 Q^2 

Random 1 0.7141 0.510 -1.793 

Random 2 0.465 0.216 -1.129 

Random 3 0.375 0.140 -30.571 

Random 4 0.313 0.098 -21.643 

Random 5 0.210 0.044 -46.378 

TABLE 8: RANDOM MODELS PARAMETERS 

Average R : 0.370 

Average R^2 : 0.162 

Average Q^2 : -16.107 

cRp^2 : 0.633 

 

DISCUSSION: Model 1 gives the best GFA 

derived QSTR model for predict the p1/EC50 of 

PCDFs. The result of the GFA QSTR model is in 

conformity with the standard shown in Table 2  as 

N = 24, Friedman LOF = 0.361, R
2
 = 0.963, R

2
adj. 

= 0.955 R
2
cv

 
= 0.889, R

2
pred= 0.8286, P95% ˂ 0.05. 

This confirms the robustness of the model. Fig. 2 

reveals the agreement between the experimental 

and the predicted values of p1/EC50 of molecules in 

the test set. The high Linearity of this plot indicates 

a sound agreement between the experimental and 

predicted values indicative of the high internal 

accuracy of the model. Likewise, Fig. 3 gives a 

combined plot of the experimental and the 

predicted values of p1/EC50 training and test set 

molecules.  

The high linearity of the plot is indicative of an 

excellent external predictive power of the model. 

The comparison of experimental and predicted 

p1/EC50 of the compounds is presented in Table 6. 

The predictability of model 1 is evidenced by the 

low residual values observed in the Table. The P-

value of the optimization model at 95% confidence 
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level shown has α value ˂0.05. This reveals that the 

alternative hypothesis that the magnitude of the 

observed toxicity of PCDFs is a direct function of 

the descriptors of their total chemical structures 

takes preference over the null hypothesis, which 

states otherwise. The statistical significance of the 

relationship between the toxicity of PCDFs and 

their molecular descriptors was further 

demonstrated by Y-randomization procedure. The 

results of Y-randomization test, as well as the 

random model's parameters, are shown in Tables 7 

and 8, respectively. The low R
2
 and Q

2
 values 

obtained shows that the optimization model is 

robust and was not obtained due to a chance 

correlation. The fact that the value of cR
2
p of the 

model is > 0.5, as reported in Table 8 is a good 

confirmation that the model is robust and very 

reliable 
18

. 

Since, the model 1 cannot predict the toxicity of all 

compounds in the universe, its applicability domain 

was determined using William‟s plot shown in Fig. 

4. All the compound in the test set falls inside the 

domain of the GFA model (the warning leverage h* 

=0.40). There are only two compounds in the 

training set which have the leverage higher than the 

warning h* value as shown in the plot, thus they 

can be regarded as structural outliers. This implies 

that the models can be successfully applied to this 

series of Polychlorinated dibenzofurans. The few 

compounds with higher leverage than h* are most 

likely to be structural outliers. 

Significance of the Descriptors in the Model 1: 
The positive coefficient of the descriptors; 

MATS2e, SpDiam_Dzv, SHBa reveal that the 

toxicity of PCDFs increases with an increase in the 

values of these descriptors. Thus, the higher the 

values of these descriptors in a PCDFs, the more 

the toxicity of the molecule and vice versa. Also, 

the negative coefficient of XLogP descriptor as an 

indication that the value of this descriptor in 

PCDFs varies inversely with its toxicity. The 

percentage contribution of each descriptor in the 

model include; 33.50% (MATS2e), 15.1% 

(SpDiam_ Dzv), 35.5% (SHBa), 15.9% (XLogP). 

Judging from the percentage contribution of each 

descriptor in the model, MATS2e and SHBa 

descriptors were found to predominantly influence 

the observed toxicity of PCDFs. MATS2e (Moran 

auto-correlation / weighted by Sanderson electro-

negativities) is a descriptor of electro-negativity of 

the molecules. Its positive coefficient in the model 

reveals that the toxicity of PCDFs varies directly 

with the value of this descriptor in the molecule. 

This is consonance with the findings of Emilia et 

al. (2011) 
19

 in which the observed toxicity of 

aromatic nitro-derivatives was influenced by a 

descriptor of molecular electro-negativity, X1.  

SpDiam_Dzv (Spectral diameter from Barysz 

matrix weighted by van der Waals volumes) is a 

descriptor of molecular size. Its positive coefficient 

in the model reveals that the toxicity of PCDFs 

varies directly with the value of this descriptor in 

the molecule. This is an agreement with the 

findings Falandysz et al. (2001) 
20 

in which van der 

Waal's volume (size descriptor) of dioxins has a 

pronounced influence on the observed toxicity of 

the molecules. Also in agreement is the result of the 

QSTR modelling by Hassan et al. (2016) 
21

 in 

which ETA-dAlpha-B (a measure of electronic 

features of the molecules relative to molecular size) 

was found to influence the toxicity of the studied 

dioxins. The increase in toxicity with an increase in 

molecular size may be due to the possibility of the 

molecule been largely confined to the plasma 

compartment because of their too large size 

affecting its distribution via out the body. 

XLogP is a descriptor of lipophilicity of molecules. 

Its negative coefficient in the model is an indication 

that the value of this descriptor varies inversely 

with the toxicity of the molecules and vice versa. 

SHBa (Sum of E-States for (strong) hydrogen bond 

acceptors), just as the name implies it is a 

descriptor of hydrogen bond acceptor ability of a 

molecule. Its positive coefficient in the model 

reveals that the toxicity of PCDFs varies directly 

with the value of this descriptor in the molecule. 

This is in agreement with the findings of Lipinski 

et al. (2001) 
22

 and van de et al. (2003) 
23

. The 

increase in toxicity of PCDFs with an increase in 

values of hydrogen bond acceptor descriptors may 

be due to the possibility of this descriptor eliciting 

some interaction of the toxic molecules with 

biological macromolecules such as enzymes or 

cellular receptors. 

CONCLUSION: In this study, QSTR modeling 

for the toxicity of Polychlorinated dibenzofurans 

(35 PCDFs) to explore the structural features that 
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are responsible for its toxicity was successfully 

performed using Genetic Function Approximation 

(GFA) approach at the B3LYP level of theory and 

6-31G* as a basis set. The observed log (1/EC50) of 

the Polychlorinated dibenzofurans (PCDFs) was 

found to be predominantly influenced by MATS2e, 

SpDiam_Dzv, SHBa, and XLogP descriptors. The 

robustness, reliability, stability and applicability of 

the QSTR models was established by internal and 

external validation techniques (N = 24, Friedman 

LOF = 0.361, R
2
 = 0.963, R

2
adj. = 0.955 R

2
cv

 
= 

0.889, R
2
pred= 0.8286, P95% ˂ 0.05.). It is believed 

that the information in this model will provide a 

fast, economical and more environmentally friendly 

techniques of assessing the toxicity of 

Polychlorinated dibenzofurans (PCDFs) and other 

related Polychlorinated aromatic toxic chemicals/ 

pollutants which are being constantly released into 

our environment owing to ever increasing industrial 

activities and incomplete combustion of various 

processes such as medical and domestic wastes 

incineration. 
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