Review Article

ISSN: 2394-9864

INTERNATIONAL JOURNAL OF LIFE SCIENCES AND REVIEW

Received on 21 September 2017; received in revised form, 19 October 2017; accepted, 13 November 2017; published 01 December 2017

NATURAL ANTHELMINTIC MEDICINE: A COMPREHENSIVE REVIEW

A. Qazi Majaz * 1 and I. Molvi Khurshid 2

Ali-Allana College of Pharmacy ¹, Akkalkuwa, Nandurbar - 425415, Maharashtra, India. Ibn-Sina National College for Medical Studies ², Jeddah, Kingdom of Saudia Arabia.

ABSTRACT: Helminthiasis is prevalent globally, but is more common in developing countries with poorer personal and environmental hygiene. In the human body gastrointestinal tract is the abode of many helminths, but some also live in tissue. They harm the host by depriving him of food, causing blood loss, injury to organs, intestinal or lymphatic obstruction. It is estimated that hundreds of millions of people harbor parasitic worms and one-third of the almost three billion people that live below the poverty line in developing regions of sub-Saharan Africa, Asia, and the Americas are infected with one or more helminth. This review gives an overview of symptoms, diagnosis, treatment, prevalence, and herbs used in helminthiasis.

Keywords: Helminth, Anthelmintic, Helminthiasis

Correspondence to Author:

A. Qazi Majaz

Ali-Allana College of Pharmacy, Akkalkuwa, Nandurbar - 425415, Maharashtra, India.

E-mail:

INTRODUCTION: The word Helminths is derived from the Greek meaning worms and may be defined as multicellular eukaryotic animals that generally possess digestive, circulatory, nervous, excretory, and reproductive systems. Some are free-living in soil and water ^{1, 2}. Helminths are divided into two major phyla that are nematodes and platyhelminths. Nematodes (roundworms) include the major intestinal worms and the filarial worms and onchocerciasis. Platyhelminths (flatworms) include the flukes (trematodes) and the tapeworms (cestodes) ². As per WHO Lymphatic filariasis, Onchocerciasis, Schistosomiasis, Soiltransmitted helminthiasis is the most common infections in human being produced by helminth.

DOI:

10.13040/IJPSR.0975-8232.IJLSR.3(12).125-27

The article can be accessed online on www.ijlsr.com

DOI link: http://dx.doi.org/10.13040/IJPSR.0975-8232.IJLSR.3(12).125-27

Lymphatic filariasis caused by infection with the nematodes *Wuchereria bancrofti*, *Brugia malayi* and *B. timori*. Onchocerciasis caused by infection with the nematode *Onchocerca volvulus*. Intestinal schistosomiasis caused by infection with the trematodes *Schistosoma mansoni*, *S. mekongi*, *S. japonicum*, and *S. intercalatum*, and urinary schistosomiasis caused by infection with *S. haematobium*. Soil - transmitted helminthiasis caused by infection with the nematodes Ascaris lumbricoides (roundworm), *Ancylostoma duodenale* and *Necator americanus* (hookworm), and *Trichuris trichiura* (whipworm) ³.

Diagnosis: Helminthiasis mostly affect in gastrointestinal tract thus local symptoms like epigastric pain, diarrhea, malabsorption states, appendicitis, right iliac fossa pain, rectal prolapse, bowel obstruction (volvulus), biliary obstruction (cholangitis) are mostly used for diagnosis along with systemic symptoms like anemia, eosinophilia, fever, bronchospasm, pneumonitis, septicaemia, epilepsy, dermatological manifestations, *etc*. Based on local and systemic symptoms identification of worm done by microscopically stool examination for ova, cysts and parasites, and a full blood count for eosinophilia. Radiology, biopsy, and Proctoscopy may also be used for diagnosis where identification of parasite is difficult by stool examination ⁴.

Treatment: Early and regular administration of the anthelminthic drugs recommended by WHO such albendazole, mebendazole, diethylcarbamazine (citrate), ivermectin, levamisole, praziquantel, pyrantel reduces the occurrence, extent, severity and long-term consequences of morbidity, and in certain epidemiological conditions contributes to a sustained reduction in transmission ³. Generally, a wide range of chemical compound is used as Anthelmintics, which is classified as under ⁵.

• Benzimidazole: Mebendazole, Albendazole, Thiabendazole

• Quinolines and Isoquinolines: Oxamniquine, Praziquantel

ISSN: 2394-9864

- Piperazine: Piperazine citrates, Diethylcarbamazine
- Vinyl pyrimidines: Pyrantel Pamoate
- Amides: Niclosamide
- Imidazothiazoles: Levamisole
- Organophosphates Metrifonate

Prevalence: It is estimated that hundreds of millions of people harbor parasitic worms **Table 1** and one-third of the almost three billion people that live below the poverty line in developing regions of sub-Saharan Africa, Asia, and the Americas are infected with one or more helminth ¹.

TABLE 1: GLOBAL PREVALENCE OF HELMINTHIASIS

S. no.	Disease	Major Etiologic Agent Global Prevalence					
Soil-transmitted nematodes							
1	Ascariasis	Ascariasis lumbricoides (roundworm) 807 million					
2	Trichuriasis	Trichuris trichiura (whipworm) 604 million					
3	Hookworm	Necator americanus; Ancylostoma duodenale 576 million					
4	Strongyloidiasis	Strongyloides stercoralis (thread worm) 30–100 million					
Filarial nematodes							
1	LF	Wuchereria bancrofti; Brugia malayi 120 million					
2	Onchocerciasis (river blindness)	Onchocerca volvulus	37 million				
3	Loiasis	Loa loa	13 million				
4	Dracunculiasis (guinea worm)	Dracunculus medinensis	0.01 million				
Platyhelminth flukes							
1	Schistosomiasis	Schistosoma haematobium	207 million				
		Schistosoma mansoni					
		Schistosoma japonicum (blood flukes)					
2	Food-borne trematodiases	Clonorchis sinensis (liver fluke);	>40 million				
		Opisthorchis viverinni (liver fluke);					
		Paragonimus spp. (lung flukes);					
		Fasciolopsis buski (intestinal fluke);					
		Fasciola hepatica (intestinal fluke)					
Platyhelminth tapeworms							
1	Cysticercosis	Taenia solium (pork tapeworm)	0.4 million				

Plants Having Anthelmintic Activity: The plants have anthelmintic activity mainly due to their phytoconstituents such as phenolic compounds, flavonoids, tannins, and alkaloids.

They may act jointly or separately by inhibition of tubulin polymerization and blocking glucose uptake which produces damage to the muco polysaccharide membrane of worms will expose the outer layer restricting their movement which finally may cause paralysis and ultimately death of parasite ⁶.

A number of plants have shown anthelmintic activity against various helminths **Table 2** contains a list of plants with anthelmintic activity identified recently.

TABLE 2: LIST OF PLANTS WITH ANTHELMINTIC ACTIVITY

S. no.	Botanical name	Family	Parts of plant	Active Phytochemical
1	Acacia suma	Fabaceae	Bark	Gallo-catechin
2	Acalypha fructicosa	Euphorbiaceae	Whole Plant	Tannins, flavonoids
3	Acalypha indica	Euphorbiaceae	Leaves	Alkaloids, saponins
4	Aegle marmelos	Rutaceae	Fruits	Tannins
5	Ailanthus excelsa	Simaroubaceae	Bark	Alkaloids, flavonoids
6	Anemone vitifolia	Ranunculaceae	Root	Glycosides, alkaloids
7	Barringto nia acutangula	Lecythidaceae	Leaves	Terpenoids, tannins
8	Bauhinia purpurea	Fabaceae	Whole Plant	Leutin
9	Bauhinia racemosa	Fabaceae	Whole Plant	Kaempferol, coumarins, steroids
10	Caesalpania pulcherrima	Leguminaceae	Flowers	Di-terpenoids
11	Cassia tora	Fabaceae	Leaves	Alkaloids, saponins
12	Cissamp elospareira	Menispermaceae	Leaves	Alkaloids, saponins
13	Citrus acurantium	Rutaceae	Fruit juice	Alkaloids, steroids
14	Cymbopogon martinii	Poaceae	Leaves	Geraniol
15	Cymbapogon schoenanthus	Poaceae	Leaves	Geraniol
16	Clerodendrum phlomidis	Verbanecaea	Aerial parts	Tannins, flavonoids, terpenoids
17	Corallocarpus epigaeus	Cucurbitaceae	Roots, rhizomes	Ketod iol, carpenoyl ester
18	Clitoria ternatea	Fabaceae	Leaves	Alkaloids, amino acids
19	Ficus bengalensis	Moraceae	Fruits	Alkaloids, flavonoids
20	Gymnema sylvestre	Asclepiadaceae	Leaves	Triterpenoids
21	Jalan sregia	Juglandacaeae	Leaves	Tannins, saponins
22	Lawsonia inermis	Lythraceae	Leaves	Lawsone
23	Leptadenia pyrotechnica	Asclepiadaceae	Stem	Flavonoids, glycosides
24	Maduca indica	Sapotaceae	Flowers	Alkaloids
25	Manihot esculenta	Euphorbiaceae	Leaves	Glycosides
26	Murraya koengil	Rutaceae	Leaves	Girinimbine
27	Neolamarckia cadamba	Rubiaceae	Bark	Indole alkaloids
28	Pandanus fascicularis	Pandanaceae	Leaves	Tannins, saponins
29	Parkia biglobosa	Fabaceae	Leaves	Alkaloids, saponins
30	Prosopis cineraria	Mimosaceae	Bark	Fixed oils
31	Sapindus trifoliatus	Sapindaceae	Seeds	Saponins, flavonoids
32	Saraca indica	Caesalpinaceae	Leaves	Tannins, glycosides
33	Sesbania grandiflora	Fabaceae	Bark	Alkaloids, tannins
34	Symplocos racemosa	Symplocaceae	Bark	Glycosides

CONCLUSION: This review gives an overview of symptoms, diagnosis, treatment, prevalence, and herbs used in helminthiasis.

ACKNOWLEDGEMENT: Nil

CONFLICT OF INTEREST: Nil

REFERENCES:

- Peter JH, Paul JB, Jeffrey MB, Charles HK, Edward JP and Jacobson J: Helminth infections: the great neglected tropical diseases. The Journal of Clinical Investigation 2008; 118(4): 1311-1321.
- 2. Mane LB, Hingmire YR and Gunale SB: Anthelmintic activity of ethanolic extract of *Tectonia grandis*. Asian

Journal of Pharmaceutical Technology & Innovation 2015; 03(10): 32-36.

ISSN: 2394-9864

- Preventive chemotherapy in human helminthiasis: coordinated use of anthelminthic drugs in control interventions: a manual for health professionals and program managers. Geneva, Switzerland. Department of Control of Neglected Tropical Diseases (NTD), World Health Organization; 2006.
- Abbas A and Newsholme W: Diagnosis and recommended treatment of helminth infections. Prescribes 2009; (3): 31-40
- Sriram D and Yogeshwari P: Medicinal Chemistry. Dorling Kindersly (India) Pvt. Ltd; New Delhi. Edition 2nd, 2011.
- Kumar R, Elumalai A and Eswaraiah MC: An updated review on anthelmintic medicinal plants. Journal of Pharmaceutical Science and Innovation 2012; 1(1): 32-34.

How to cite this article:

Majaz AQ and Khurshid IM: Natural anthelmintic medicine: a comprehensive review. Int J Life Sci & Rev 2017; 3(12): 125-27. doi: 10.13040/ JJPSR.0975-8232.JJLSR.3(12).125-27.

All © 2015 are reserved by International Journal of Life Sciences and Review. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This article can be downloaded to **ANDROID OS** based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore)